3.2.51 \(\int (c+d x)^3 (a+b \sin (e+f x)) \, dx\) [151]

3.2.51.1 Optimal result
3.2.51.2 Mathematica [A] (verified)
3.2.51.3 Rubi [A] (verified)
3.2.51.4 Maple [A] (verified)
3.2.51.5 Fricas [A] (verification not implemented)
3.2.51.6 Sympy [B] (verification not implemented)
3.2.51.7 Maxima [B] (verification not implemented)
3.2.51.8 Giac [A] (verification not implemented)
3.2.51.9 Mupad [B] (verification not implemented)

3.2.51.1 Optimal result

Integrand size = 18, antiderivative size = 90 \[ \int (c+d x)^3 (a+b \sin (e+f x)) \, dx=\frac {a (c+d x)^4}{4 d}+\frac {6 b d^2 (c+d x) \cos (e+f x)}{f^3}-\frac {b (c+d x)^3 \cos (e+f x)}{f}-\frac {6 b d^3 \sin (e+f x)}{f^4}+\frac {3 b d (c+d x)^2 \sin (e+f x)}{f^2} \]

output
1/4*a*(d*x+c)^4/d+6*b*d^2*(d*x+c)*cos(f*x+e)/f^3-b*(d*x+c)^3*cos(f*x+e)/f- 
6*b*d^3*sin(f*x+e)/f^4+3*b*d*(d*x+c)^2*sin(f*x+e)/f^2
 
3.2.51.2 Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.38 \[ \int (c+d x)^3 (a+b \sin (e+f x)) \, dx=\frac {1}{4} a x \left (4 c^3+6 c^2 d x+4 c d^2 x^2+d^3 x^3\right )-\frac {b (c+d x) \left (c^2 f^2+2 c d f^2 x+d^2 \left (-6+f^2 x^2\right )\right ) \cos (e+f x)}{f^3}+\frac {3 b d \left (c^2 f^2+2 c d f^2 x+d^2 \left (-2+f^2 x^2\right )\right ) \sin (e+f x)}{f^4} \]

input
Integrate[(c + d*x)^3*(a + b*Sin[e + f*x]),x]
 
output
(a*x*(4*c^3 + 6*c^2*d*x + 4*c*d^2*x^2 + d^3*x^3))/4 - (b*(c + d*x)*(c^2*f^ 
2 + 2*c*d*f^2*x + d^2*(-6 + f^2*x^2))*Cos[e + f*x])/f^3 + (3*b*d*(c^2*f^2 
+ 2*c*d*f^2*x + d^2*(-2 + f^2*x^2))*Sin[e + f*x])/f^4
 
3.2.51.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3042, 3798, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^3 (a+b \sin (e+f x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (c+d x)^3 (a+b \sin (e+f x))dx\)

\(\Big \downarrow \) 3798

\(\displaystyle \int \left (a (c+d x)^3+b (c+d x)^3 \sin (e+f x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a (c+d x)^4}{4 d}+\frac {6 b d^2 (c+d x) \cos (e+f x)}{f^3}+\frac {3 b d (c+d x)^2 \sin (e+f x)}{f^2}-\frac {b (c+d x)^3 \cos (e+f x)}{f}-\frac {6 b d^3 \sin (e+f x)}{f^4}\)

input
Int[(c + d*x)^3*(a + b*Sin[e + f*x]),x]
 
output
(a*(c + d*x)^4)/(4*d) + (6*b*d^2*(c + d*x)*Cos[e + f*x])/f^3 - (b*(c + d*x 
)^3*Cos[e + f*x])/f - (6*b*d^3*Sin[e + f*x])/f^4 + (3*b*d*(c + d*x)^2*Sin[ 
e + f*x])/f^2
 

3.2.51.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3798
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.) 
, x_Symbol] :> Int[ExpandIntegrand[(c + d*x)^m, (a + b*Sin[e + f*x])^n, x], 
 x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 0] && (EqQ[n, 1] || IGtQ[ 
m, 0] || NeQ[a^2 - b^2, 0])
 
3.2.51.4 Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.23

method result size
parallelrisch \(\frac {-\left (d x +c \right ) f \left (\left (d x +c \right )^{2} f^{2}-6 d^{2}\right ) b \cos \left (f x +e \right )+3 \sin \left (f x +e \right ) \left (\left (d x +c \right )^{2} f^{2}-2 d^{2}\right ) d b +\left (\left (\frac {d x}{2}+c \right ) x \left (\frac {1}{2} d^{2} x^{2}+c d x +c^{2}\right ) a \,f^{3}+b \,c^{3} f^{2}-6 c \,d^{2} b \right ) f}{f^{4}}\) \(111\)
risch \(\frac {a \,d^{3} x^{4}}{4}+a \,d^{2} c \,x^{3}+\frac {3 a d \,c^{2} x^{2}}{2}+a \,c^{3} x +\frac {a \,c^{4}}{4 d}-\frac {b \left (d^{3} f^{2} x^{3}+3 c \,d^{2} f^{2} x^{2}+3 c^{2} d \,f^{2} x +c^{3} f^{2}-6 d^{3} x -6 c \,d^{2}\right ) \cos \left (f x +e \right )}{f^{3}}+\frac {3 b d \left (d^{2} x^{2} f^{2}+2 c d \,f^{2} x +c^{2} f^{2}-2 d^{2}\right ) \sin \left (f x +e \right )}{f^{4}}\) \(153\)
norman \(\frac {\frac {\left (a \,c^{3} f^{3}-3 b \,c^{2} d \,f^{2}+6 b \,d^{3}\right ) x}{f^{3}}+\frac {\left (2 b \,c^{3} f^{2}-12 c \,d^{2} b \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f^{3}}+\frac {d^{2} \left (a c f -b d \right ) x^{3}}{f}+\frac {\left (a \,c^{3} f^{3}+3 b \,c^{2} d \,f^{2}-6 b \,d^{3}\right ) x \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f^{3}}+\frac {d^{2} \left (a c f +b d \right ) x^{3} \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f}+\frac {a \,d^{3} x^{4}}{4}+\frac {a \,d^{3} x^{4} \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4}+\frac {6 b d \left (c^{2} f^{2}-2 d^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{f^{4}}+\frac {6 b \,d^{3} x^{2} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{f^{2}}+\frac {3 c d \left (a c f -2 b d \right ) x^{2}}{2 f}+\frac {3 c d \left (a c f +2 b d \right ) x^{2} \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 f}+\frac {12 c \,d^{2} b x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{f^{2}}}{1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )}\) \(317\)
parts \(\frac {a \left (d x +c \right )^{4}}{4 d}+\frac {b \left (\frac {d^{3} \left (-\left (f x +e \right )^{3} \cos \left (f x +e \right )+3 \left (f x +e \right )^{2} \sin \left (f x +e \right )-6 \sin \left (f x +e \right )+6 \left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{3}}+\frac {3 c \,d^{2} \left (-\left (f x +e \right )^{2} \cos \left (f x +e \right )+2 \cos \left (f x +e \right )+2 \left (f x +e \right ) \sin \left (f x +e \right )\right )}{f^{2}}-\frac {3 d^{3} e \left (-\left (f x +e \right )^{2} \cos \left (f x +e \right )+2 \cos \left (f x +e \right )+2 \left (f x +e \right ) \sin \left (f x +e \right )\right )}{f^{3}}+\frac {3 c^{2} d \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f}-\frac {6 c \,d^{2} e \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{2}}+\frac {3 d^{3} e^{2} \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{3}}-c^{3} \cos \left (f x +e \right )+\frac {3 c^{2} d e \cos \left (f x +e \right )}{f}-\frac {3 c \,d^{2} e^{2} \cos \left (f x +e \right )}{f^{2}}+\frac {d^{3} e^{3} \cos \left (f x +e \right )}{f^{3}}\right )}{f}\) \(323\)
derivativedivides \(\frac {a \,c^{3} \left (f x +e \right )-\frac {3 a \,c^{2} d e \left (f x +e \right )}{f}+\frac {3 a \,c^{2} d \left (f x +e \right )^{2}}{2 f}+\frac {3 a c \,d^{2} e^{2} \left (f x +e \right )}{f^{2}}-\frac {3 a c \,d^{2} e \left (f x +e \right )^{2}}{f^{2}}+\frac {a c \,d^{2} \left (f x +e \right )^{3}}{f^{2}}-\frac {a \,d^{3} e^{3} \left (f x +e \right )}{f^{3}}+\frac {3 a \,d^{3} e^{2} \left (f x +e \right )^{2}}{2 f^{3}}-\frac {a \,d^{3} e \left (f x +e \right )^{3}}{f^{3}}+\frac {a \,d^{3} \left (f x +e \right )^{4}}{4 f^{3}}-c^{3} b \cos \left (f x +e \right )+\frac {3 b \,c^{2} d e \cos \left (f x +e \right )}{f}+\frac {3 b \,c^{2} d \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f}-\frac {3 b c \,d^{2} e^{2} \cos \left (f x +e \right )}{f^{2}}-\frac {6 b c \,d^{2} e \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{2}}+\frac {3 b c \,d^{2} \left (-\left (f x +e \right )^{2} \cos \left (f x +e \right )+2 \cos \left (f x +e \right )+2 \left (f x +e \right ) \sin \left (f x +e \right )\right )}{f^{2}}+\frac {b \,d^{3} e^{3} \cos \left (f x +e \right )}{f^{3}}+\frac {3 b \,d^{3} e^{2} \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{3}}-\frac {3 b \,d^{3} e \left (-\left (f x +e \right )^{2} \cos \left (f x +e \right )+2 \cos \left (f x +e \right )+2 \left (f x +e \right ) \sin \left (f x +e \right )\right )}{f^{3}}+\frac {b \,d^{3} \left (-\left (f x +e \right )^{3} \cos \left (f x +e \right )+3 \left (f x +e \right )^{2} \sin \left (f x +e \right )-6 \sin \left (f x +e \right )+6 \left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{3}}}{f}\) \(482\)
default \(\frac {a \,c^{3} \left (f x +e \right )-\frac {3 a \,c^{2} d e \left (f x +e \right )}{f}+\frac {3 a \,c^{2} d \left (f x +e \right )^{2}}{2 f}+\frac {3 a c \,d^{2} e^{2} \left (f x +e \right )}{f^{2}}-\frac {3 a c \,d^{2} e \left (f x +e \right )^{2}}{f^{2}}+\frac {a c \,d^{2} \left (f x +e \right )^{3}}{f^{2}}-\frac {a \,d^{3} e^{3} \left (f x +e \right )}{f^{3}}+\frac {3 a \,d^{3} e^{2} \left (f x +e \right )^{2}}{2 f^{3}}-\frac {a \,d^{3} e \left (f x +e \right )^{3}}{f^{3}}+\frac {a \,d^{3} \left (f x +e \right )^{4}}{4 f^{3}}-c^{3} b \cos \left (f x +e \right )+\frac {3 b \,c^{2} d e \cos \left (f x +e \right )}{f}+\frac {3 b \,c^{2} d \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f}-\frac {3 b c \,d^{2} e^{2} \cos \left (f x +e \right )}{f^{2}}-\frac {6 b c \,d^{2} e \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{2}}+\frac {3 b c \,d^{2} \left (-\left (f x +e \right )^{2} \cos \left (f x +e \right )+2 \cos \left (f x +e \right )+2 \left (f x +e \right ) \sin \left (f x +e \right )\right )}{f^{2}}+\frac {b \,d^{3} e^{3} \cos \left (f x +e \right )}{f^{3}}+\frac {3 b \,d^{3} e^{2} \left (\sin \left (f x +e \right )-\left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{3}}-\frac {3 b \,d^{3} e \left (-\left (f x +e \right )^{2} \cos \left (f x +e \right )+2 \cos \left (f x +e \right )+2 \left (f x +e \right ) \sin \left (f x +e \right )\right )}{f^{3}}+\frac {b \,d^{3} \left (-\left (f x +e \right )^{3} \cos \left (f x +e \right )+3 \left (f x +e \right )^{2} \sin \left (f x +e \right )-6 \sin \left (f x +e \right )+6 \left (f x +e \right ) \cos \left (f x +e \right )\right )}{f^{3}}}{f}\) \(482\)

input
int((d*x+c)^3*(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)
 
output
(-(d*x+c)*f*((d*x+c)^2*f^2-6*d^2)*b*cos(f*x+e)+3*sin(f*x+e)*((d*x+c)^2*f^2 
-2*d^2)*d*b+((1/2*d*x+c)*x*(1/2*d^2*x^2+c*d*x+c^2)*a*f^3+b*c^3*f^2-6*c*d^2 
*b)*f)/f^4
 
3.2.51.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.87 \[ \int (c+d x)^3 (a+b \sin (e+f x)) \, dx=\frac {a d^{3} f^{4} x^{4} + 4 \, a c d^{2} f^{4} x^{3} + 6 \, a c^{2} d f^{4} x^{2} + 4 \, a c^{3} f^{4} x - 4 \, {\left (b d^{3} f^{3} x^{3} + 3 \, b c d^{2} f^{3} x^{2} + b c^{3} f^{3} - 6 \, b c d^{2} f + 3 \, {\left (b c^{2} d f^{3} - 2 \, b d^{3} f\right )} x\right )} \cos \left (f x + e\right ) + 12 \, {\left (b d^{3} f^{2} x^{2} + 2 \, b c d^{2} f^{2} x + b c^{2} d f^{2} - 2 \, b d^{3}\right )} \sin \left (f x + e\right )}{4 \, f^{4}} \]

input
integrate((d*x+c)^3*(a+b*sin(f*x+e)),x, algorithm="fricas")
 
output
1/4*(a*d^3*f^4*x^4 + 4*a*c*d^2*f^4*x^3 + 6*a*c^2*d*f^4*x^2 + 4*a*c^3*f^4*x 
 - 4*(b*d^3*f^3*x^3 + 3*b*c*d^2*f^3*x^2 + b*c^3*f^3 - 6*b*c*d^2*f + 3*(b*c 
^2*d*f^3 - 2*b*d^3*f)*x)*cos(f*x + e) + 12*(b*d^3*f^2*x^2 + 2*b*c*d^2*f^2* 
x + b*c^2*d*f^2 - 2*b*d^3)*sin(f*x + e))/f^4
 
3.2.51.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 264 vs. \(2 (88) = 176\).

Time = 0.28 (sec) , antiderivative size = 264, normalized size of antiderivative = 2.93 \[ \int (c+d x)^3 (a+b \sin (e+f x)) \, dx=\begin {cases} a c^{3} x + \frac {3 a c^{2} d x^{2}}{2} + a c d^{2} x^{3} + \frac {a d^{3} x^{4}}{4} - \frac {b c^{3} \cos {\left (e + f x \right )}}{f} - \frac {3 b c^{2} d x \cos {\left (e + f x \right )}}{f} + \frac {3 b c^{2} d \sin {\left (e + f x \right )}}{f^{2}} - \frac {3 b c d^{2} x^{2} \cos {\left (e + f x \right )}}{f} + \frac {6 b c d^{2} x \sin {\left (e + f x \right )}}{f^{2}} + \frac {6 b c d^{2} \cos {\left (e + f x \right )}}{f^{3}} - \frac {b d^{3} x^{3} \cos {\left (e + f x \right )}}{f} + \frac {3 b d^{3} x^{2} \sin {\left (e + f x \right )}}{f^{2}} + \frac {6 b d^{3} x \cos {\left (e + f x \right )}}{f^{3}} - \frac {6 b d^{3} \sin {\left (e + f x \right )}}{f^{4}} & \text {for}\: f \neq 0 \\\left (a + b \sin {\left (e \right )}\right ) \left (c^{3} x + \frac {3 c^{2} d x^{2}}{2} + c d^{2} x^{3} + \frac {d^{3} x^{4}}{4}\right ) & \text {otherwise} \end {cases} \]

input
integrate((d*x+c)**3*(a+b*sin(f*x+e)),x)
 
output
Piecewise((a*c**3*x + 3*a*c**2*d*x**2/2 + a*c*d**2*x**3 + a*d**3*x**4/4 - 
b*c**3*cos(e + f*x)/f - 3*b*c**2*d*x*cos(e + f*x)/f + 3*b*c**2*d*sin(e + f 
*x)/f**2 - 3*b*c*d**2*x**2*cos(e + f*x)/f + 6*b*c*d**2*x*sin(e + f*x)/f**2 
 + 6*b*c*d**2*cos(e + f*x)/f**3 - b*d**3*x**3*cos(e + f*x)/f + 3*b*d**3*x* 
*2*sin(e + f*x)/f**2 + 6*b*d**3*x*cos(e + f*x)/f**3 - 6*b*d**3*sin(e + f*x 
)/f**4, Ne(f, 0)), ((a + b*sin(e))*(c**3*x + 3*c**2*d*x**2/2 + c*d**2*x**3 
 + d**3*x**4/4), True))
 
3.2.51.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 462 vs. \(2 (88) = 176\).

Time = 0.22 (sec) , antiderivative size = 462, normalized size of antiderivative = 5.13 \[ \int (c+d x)^3 (a+b \sin (e+f x)) \, dx=\frac {4 \, {\left (f x + e\right )} a c^{3} + \frac {{\left (f x + e\right )}^{4} a d^{3}}{f^{3}} - \frac {4 \, {\left (f x + e\right )}^{3} a d^{3} e}{f^{3}} + \frac {6 \, {\left (f x + e\right )}^{2} a d^{3} e^{2}}{f^{3}} - \frac {4 \, {\left (f x + e\right )} a d^{3} e^{3}}{f^{3}} + \frac {4 \, {\left (f x + e\right )}^{3} a c d^{2}}{f^{2}} - \frac {12 \, {\left (f x + e\right )}^{2} a c d^{2} e}{f^{2}} + \frac {12 \, {\left (f x + e\right )} a c d^{2} e^{2}}{f^{2}} + \frac {6 \, {\left (f x + e\right )}^{2} a c^{2} d}{f} - \frac {12 \, {\left (f x + e\right )} a c^{2} d e}{f} - 4 \, b c^{3} \cos \left (f x + e\right ) + \frac {4 \, b d^{3} e^{3} \cos \left (f x + e\right )}{f^{3}} - \frac {12 \, b c d^{2} e^{2} \cos \left (f x + e\right )}{f^{2}} + \frac {12 \, b c^{2} d e \cos \left (f x + e\right )}{f} - \frac {12 \, {\left ({\left (f x + e\right )} \cos \left (f x + e\right ) - \sin \left (f x + e\right )\right )} b d^{3} e^{2}}{f^{3}} + \frac {24 \, {\left ({\left (f x + e\right )} \cos \left (f x + e\right ) - \sin \left (f x + e\right )\right )} b c d^{2} e}{f^{2}} - \frac {12 \, {\left ({\left (f x + e\right )} \cos \left (f x + e\right ) - \sin \left (f x + e\right )\right )} b c^{2} d}{f} + \frac {12 \, {\left ({\left ({\left (f x + e\right )}^{2} - 2\right )} \cos \left (f x + e\right ) - 2 \, {\left (f x + e\right )} \sin \left (f x + e\right )\right )} b d^{3} e}{f^{3}} - \frac {12 \, {\left ({\left ({\left (f x + e\right )}^{2} - 2\right )} \cos \left (f x + e\right ) - 2 \, {\left (f x + e\right )} \sin \left (f x + e\right )\right )} b c d^{2}}{f^{2}} - \frac {4 \, {\left ({\left ({\left (f x + e\right )}^{3} - 6 \, f x - 6 \, e\right )} \cos \left (f x + e\right ) - 3 \, {\left ({\left (f x + e\right )}^{2} - 2\right )} \sin \left (f x + e\right )\right )} b d^{3}}{f^{3}}}{4 \, f} \]

input
integrate((d*x+c)^3*(a+b*sin(f*x+e)),x, algorithm="maxima")
 
output
1/4*(4*(f*x + e)*a*c^3 + (f*x + e)^4*a*d^3/f^3 - 4*(f*x + e)^3*a*d^3*e/f^3 
 + 6*(f*x + e)^2*a*d^3*e^2/f^3 - 4*(f*x + e)*a*d^3*e^3/f^3 + 4*(f*x + e)^3 
*a*c*d^2/f^2 - 12*(f*x + e)^2*a*c*d^2*e/f^2 + 12*(f*x + e)*a*c*d^2*e^2/f^2 
 + 6*(f*x + e)^2*a*c^2*d/f - 12*(f*x + e)*a*c^2*d*e/f - 4*b*c^3*cos(f*x + 
e) + 4*b*d^3*e^3*cos(f*x + e)/f^3 - 12*b*c*d^2*e^2*cos(f*x + e)/f^2 + 12*b 
*c^2*d*e*cos(f*x + e)/f - 12*((f*x + e)*cos(f*x + e) - sin(f*x + e))*b*d^3 
*e^2/f^3 + 24*((f*x + e)*cos(f*x + e) - sin(f*x + e))*b*c*d^2*e/f^2 - 12*( 
(f*x + e)*cos(f*x + e) - sin(f*x + e))*b*c^2*d/f + 12*(((f*x + e)^2 - 2)*c 
os(f*x + e) - 2*(f*x + e)*sin(f*x + e))*b*d^3*e/f^3 - 12*(((f*x + e)^2 - 2 
)*cos(f*x + e) - 2*(f*x + e)*sin(f*x + e))*b*c*d^2/f^2 - 4*(((f*x + e)^3 - 
 6*f*x - 6*e)*cos(f*x + e) - 3*((f*x + e)^2 - 2)*sin(f*x + e))*b*d^3/f^3)/ 
f
 
3.2.51.8 Giac [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.72 \[ \int (c+d x)^3 (a+b \sin (e+f x)) \, dx=\frac {1}{4} \, a d^{3} x^{4} + a c d^{2} x^{3} + \frac {3}{2} \, a c^{2} d x^{2} + a c^{3} x - \frac {{\left (b d^{3} f^{3} x^{3} + 3 \, b c d^{2} f^{3} x^{2} + 3 \, b c^{2} d f^{3} x + b c^{3} f^{3} - 6 \, b d^{3} f x - 6 \, b c d^{2} f\right )} \cos \left (f x + e\right )}{f^{4}} + \frac {3 \, {\left (b d^{3} f^{2} x^{2} + 2 \, b c d^{2} f^{2} x + b c^{2} d f^{2} - 2 \, b d^{3}\right )} \sin \left (f x + e\right )}{f^{4}} \]

input
integrate((d*x+c)^3*(a+b*sin(f*x+e)),x, algorithm="giac")
 
output
1/4*a*d^3*x^4 + a*c*d^2*x^3 + 3/2*a*c^2*d*x^2 + a*c^3*x - (b*d^3*f^3*x^3 + 
 3*b*c*d^2*f^3*x^2 + 3*b*c^2*d*f^3*x + b*c^3*f^3 - 6*b*d^3*f*x - 6*b*c*d^2 
*f)*cos(f*x + e)/f^4 + 3*(b*d^3*f^2*x^2 + 2*b*c*d^2*f^2*x + b*c^2*d*f^2 - 
2*b*d^3)*sin(f*x + e)/f^4
 
3.2.51.9 Mupad [B] (verification not implemented)

Time = 0.61 (sec) , antiderivative size = 191, normalized size of antiderivative = 2.12 \[ \int (c+d x)^3 (a+b \sin (e+f x)) \, dx=\frac {a\,d^3\,x^4}{4}-\frac {3\,\sin \left (e+f\,x\right )\,\left (2\,b\,d^3-b\,c^2\,d\,f^2\right )}{f^4}-\frac {\cos \left (e+f\,x\right )\,\left (b\,c^3\,f^2-6\,b\,c\,d^2\right )}{f^3}+a\,c^3\,x+\frac {3\,x\,\cos \left (e+f\,x\right )\,\left (2\,b\,d^3-b\,c^2\,d\,f^2\right )}{f^3}+\frac {3\,a\,c^2\,d\,x^2}{2}+a\,c\,d^2\,x^3-\frac {b\,d^3\,x^3\,\cos \left (e+f\,x\right )}{f}+\frac {3\,b\,d^3\,x^2\,\sin \left (e+f\,x\right )}{f^2}+\frac {6\,b\,c\,d^2\,x\,\sin \left (e+f\,x\right )}{f^2}-\frac {3\,b\,c\,d^2\,x^2\,\cos \left (e+f\,x\right )}{f} \]

input
int((a + b*sin(e + f*x))*(c + d*x)^3,x)
 
output
(a*d^3*x^4)/4 - (3*sin(e + f*x)*(2*b*d^3 - b*c^2*d*f^2))/f^4 - (cos(e + f* 
x)*(b*c^3*f^2 - 6*b*c*d^2))/f^3 + a*c^3*x + (3*x*cos(e + f*x)*(2*b*d^3 - b 
*c^2*d*f^2))/f^3 + (3*a*c^2*d*x^2)/2 + a*c*d^2*x^3 - (b*d^3*x^3*cos(e + f* 
x))/f + (3*b*d^3*x^2*sin(e + f*x))/f^2 + (6*b*c*d^2*x*sin(e + f*x))/f^2 - 
(3*b*c*d^2*x^2*cos(e + f*x))/f